вівторок, 14 червня 2016 р.

Сценарій випускного вечора 11 клас

Калейдоскоп життя. Випуск 2016
               (Звучить  мелодія Танок на майдані Конго Порепалося серце

Учень читає слова: Є на світі школа, з якою не зрівняється жодна із шкіл у світі. А у ній найкрасивіші дівчата, найталановитіші хлопці та найкращі вчителі. Це найбільший скарб України, І все це випускники Шумської ЗОШ І-ІІІ ступенів №1 2016 року. Зустрічайте їх.
Класний керівник читає характеристики на кожного учня
(Під улюблену мелодію виходять випускники по одному на сцену. Демонструються слайди про життя випускника)

Випускний 2016. Характеристики

       

Лівар М Життєрадісний, добрий, галантний, стильний, цілеспрямований  з чарівною усмішкою , уміє підняти настрій дотепним жартом
Гарний хлопець ще й спортсмен ,прямо скажем супермен,
Всі дівчата закохались. Та іще не всі зізнались,
Як розкаже анекдот - сміхом котиться народ!

Буде в амплуа незвичнім Кандидат Наук Медичних! 

Аіфтенко В Веселий, привітний, правдолюб, зі своєрідним почуттям гумору
Свобода  для Влада ―  це незалежність.
Хлопець цей у нас проворний, до роботи він моторний,
Дуже він хазяйновитий,всім відомо працьовитий
Буде мабуть депутатом, зароблятиме багато,
В школу спонсором прийде, знаєм нас не підведе,

пʼятниця, 15 квітня 2016 р.

Розв'язування прикладних задач

Мета. Розширити і поглибити знання учнів про прямокутні трикутники та способи розв'язування прямокутних трикутників. Вчити практично застосовувати набуті знання, зокрема вміти знаходити відстань до недоступної точки. Розвивати в учнів кмітливість, логічне мислення. Виховувати бажання вчити геометрію.
Обладнання. Лінійка, циркуль, транспортир, рулетка.
Тип уроку. Практична робота
 План уроку
І Організаційний момент
 ІІ. Актуалізація опорних знань.
1. Мозковий штурм
 ІІІ. Ознайомлення з темою і завданнями уроку" Розв'язування прямокутних трикутників"
 1 Робота в групах
Клас поділяється на чотири групи. Кожній групі є науковий  керівник та практик
1завдання: Виміряти відстань до недоступної точки. ( Висоту груші)

2 завдання: Виміряти відстань до недоступної точки (Висоту школи)



3 завдання : Виміряти висоту ялини


4 завдання : Виміряти висоту електричної опори
Знаючи означення синуса, косинуса та тангенса гострого кута прямокутного трикутника, учні виміряли відстані до недоступних точок. Проводили вимірювання, обчислення. Урок практики з геометрії сприяв кращому засвоєнню учнями матеріалу.

неділя, 3 квітня 2016 р.

Підготовка до пробного ЗНО з математики

                Пробне ЗНО з математики відбудеться 9 квітня 2016 року.
Запрошення на пробне тестування, в якому вказано інформацію про пункт та час проведення тестування, учасникам ПЗНО необхідно роздрукувати зі своєї персональної сторінки

вівторок, 22 березня 2016 р.

Елементи теорії ймовірності та математичної статистики. Контрольна робота

Тема. Контрольна робота з теми "Елементи теорії ймовірності та математичної статистики".
Мета. Перевірити  знання, уміння і навички учнів з теми. Здійснити тематичний контроль знань.
 Тип уроку. Перевірки знань
План уроку
 І Організаційний момент
ІІ. Контрольна робота
Варіант І
1.    На шкільному вечорі присутні 30 учнів 10 класу і 20 учнів 11  класу. Яка ймовірність того, що учень, з яким ви розмовляєте, навчається в 10 класі?           (2 б)
2.   Скільки різних парних  чотирицифрових чисел можна скласти із цифр: 1,3,5,7,0, якщо цифри в числі не повторюються?(2 бали)
3.    Скількома способами можна обрати президію з трьох учнів на класних зборах, якщо присутні 20 учнів? (2 бали)
4.    На олімпіаді з математики учні одержали такі бали:
Номер учня за списком 1 2 3 4 5 6 7 8 9 10 11 12
        Кількість балів         1 2 1 3 2 3 3 12 11 7 12 10
Складіть частотну таблицю, побудуйте полігон частот, визначте центральні тенденції.   (2 б)
5.    У кошику з грибами 10 % підосичників і 40 % сироїжки Яка ймовірність того, що взятий навмання гриб буде сироїжкою або підосичником?         (2 б)
6. Скількома способами можна розмістити 8 підручників на полиці так, щоб алгебра і геометрія стоятили поруч?(2б.)
                                                                       Варіант ІІ

1.    Із 20 квитків, занумерованих числами від 1 до 20, навмання  вибирають один. Яка ймовірність того, що номер витягнутого квитки не ділиться ні на 5, ні на 2?         (2 бали)

2.   Скільки шестицифрових чисел , кратних п'яти, можна скласти із цифр: 1,2,3,4,5,6, при умові, що числа в числі не повторюються?
3.    У кошику з фруктами 30 % яблук і 60% груш. Яка ймовірність того, що вибраний навмання фрукт буде яблуком або грушею?   (2 б)
4.    За день продали 12 пар чоловічого взуття з такими розмірами:
Номер пари взуття         1 2 3 4 5 6 7 8 9 10 11 12
            Розмір                41 39 40 40 42 43 43 42 41 41 38 39
Складіть частотну таблицю, побудуйте полігон частот, визначте центральні тенденції. (2бали)
5.Скількома способами можна розмістити 7 різних підручників на полиці так, щоб хімія і фізика   стояли поруч?    (2 бали)

6.Для чергування у класі із 20 учнів необхідно обрати 2 чергових. Скількома способами це можна зробити?  (2 бали)



Додатково тестові завдання . Тести для підготовки до ЗНО





неділя, 13 березня 2016 р.

Ймовірність випадкової події

Тема. Випадкове випробування і випадкова подія. Ймовірність випадкової події.
Мета. Ознайомити з поняттям випадкове випробування, випадкова подія, повна група подій, попарно несумісні події, рівноможливі, вірогідні і неможливі, протилежні події. Ознайомити із класичним поняттям теорії ймовірності.
 Обладнання. ППЗ, PPT.
Тип уроку. Комбінований урок
 План уроку
І Організаційний момент. 
ІІ Перевірка домашнього завдання.
Двоє учнів біля дошки пояснюють домашнє завдання
 ІІІ. Актуалізація опорних знань.
Тест для діагностики готовності вивчення теми"Елементи теорії ймовірності"
  
 IV. Вивчення нового матеріалу
1. Коротка історична довідка.
Випадкові явища цікавили людей з давніх-давен. Кавалер де Мере, один із пристрасних гравців XVII ст., під час гри в кості помітив деякі закономірності і звернувся до найвизначнішого математика Франції того часу Блеза Паскаля з такими питаннями. Коли гральний кубик підкинути 4 рази поспіль, що отримаємо в результаті? Найімовірніше, випаде шістка хоча б один раз чи шістка так жодного разу і не з'явиться? А при двадцяти чотирьох підкиданнях на що вигідніше ставити? Серед питань, які належать до часу виникнення теорії ймовірностей, наводять ще одне, — з ним, за переказом, звернувся до X. Гюйгенса один із найманих солдатів. Якщо одночасно кинути три гральні кістки, яка сума очок, має з'являтися частіше — 11 чи 12?

пʼятниця, 11 березня 2016 р.

Інтеграл та його застосування

Тема. Контрольна робота.
Мета. Перевірити знання, уміння і навички учнів обчислювати інтеграли, застосовувати набуті знання до обчислення площ криволінійних трапецій

понеділок, 15 лютого 2016 р.

Об'єми геометричних тіл. Контрольна робота

Мета. Перевірити знання, уміння і навички учнів з теми.
 Тип уроку. Перевірки знань
Обладнання. Дидактичні посібники, завдання на картках.
                                                        План уроку
 І Організаційний момент
 ІІ. Контрольна робота
 Варіант 1
1. Основою прямої призми є ромб, діагоналі якого дорівнюють 5 см і 12 см, а бічне ребро призми — 3 см. Знайдіть об'єм призми.

2. Основою піраміди є трапеція, середня лінія і висота якої відповідно до­рівнюють
 14 см і 4 см, а висота піраміди — 9 см. Знайдіть об'єм піраміди.

неділя, 14 лютого 2016 р.

Інтеграл, його геометричний та фізичний зміст. Формула Ньютона-Лейбніца (Презентація)

Мета. Ознайомити із задачами, які приводять до поняття інтеграла: задача про площу криволінійної трапеції. Формувати поняття інтеграла та його фізичний зміст. Ознайомити із формулою Ньютона -Лейбніца, основними властивостями інтеграла, які випливають із властивостей первісної. Формувати уміння обчислення площі за допомогою визначеного інтеграла, обчислювати визначені інтеграли.
 Тип уроку. Формування знань, умінь і навичок.
 Обладнання: презентація, таблиця, картки
                                                                  План уроку
І . Організаційний момент
ІІ Актуалізація опорних знань.
1.Фронтальне опитування
ІІІ. Поетапне вивчення нового матеріалу.
Геометричний зміст інтеграла
Задача 1 (про площу криволінійної трапеції)
У декартовій прямокутній системі координат розглянемо фігуру, обмежену графіком функції y=f(x) , прямими х = а, х = b та віссю Ох, причому а<b і функція неперервна і невід'ємна на відрізку [а; b]. Ця фігура називається криволінійною трапецією (див. рисунок). Знайдемо її площу S.

понеділок, 8 лютого 2016 р.

Первісна її властивості. Правила знаходження первісних. (Презентація до уроку)

Мета. Ознайомити з поняттям первісної функції на заданому проміжку, її властивостями та правилами знаходження первісних(правила інтегрування)  Дати поняття невизначеного інтеграла, як множини усіх первісних функцій. Проаналізувати таблицю первісних(невизначених інтегралів) та зв'язок інтегрування з даференціюванням. Застосовувати набуті знання до розв'язування вправ.Розвивати логічне мислення, кмітливість. Виховувати інтерес до вивчення математики.
 Тип уроку. Вивчення нового матеріалу.
Обладнання: Таблиця інтегралів, Таблиця "Первісна та її влстивості", презентація до уроку.
                                                                       План уроку
 І. Організіційний момент
ІІ.Актуалізація опорних знань.  Які вам відомі у математиці обернені операції? Множення-ділення, піднесення до степеня-добування кореня)
Логічно припустити, що і до знаходження похідної існуватиме обернена дія, тобто диференціювання-інтегрування. Що це за процес?
ІІІ. Ознайомлення з темою уроку.
1. Поняття первісноїю. Функцію F(x) називають первісною на деякому проміжку [ab], якщо для всіх х з цього проміжку виконується рівність F'(x)= f(x).
Функція має бути диференційована на цьому проміжку.



субота, 23 січня 2016 р.

Пробне ЗНО 2016

Пробне зовнішнє незалежне оцінювання – це добровільне тестування осіб, які виявили бажання вступати до вищих навчальних закладів, що дає їм можливість ознайомитись із процедурою проходження зовнішнього незалежного оцінювання.
Реєстрація осіб для участі в пробному зовнішньому незалежному оцінюванні в 2016 році триватиме з 5до 30 січня 2016 року.
 Вартість пробного ЗНО з одного предмета становить 111.00 грн.
Увага! Реєстрація для проходження пробного тестування не передбачає автоматичної реєстрації для участі в основній сесії зовнішнього незалежного оцінювання.

вівторок, 17 листопада 2015 р.

Правила диференціювання (Презентація)

Мета. Розширити та поглибити знання учнів про похідні елементарних функцій. Формувати уміння і навички обчислення похідних. Закріпити знання про механічний та геометричний зміст похідної. Розвивати логічне мислення, вміння аналізувати та робити висновки. Виховувати самостійність, наполегливість.
 Тип уроку. Засвоєння нових знань.
Обладнання. Таблиця похідних
План уроку
І Організаційний етап
ІІ Перевірка домашнього завдання
1. Індивідуальне опитування
Учень1
1)Чи може дотична до графіка функції у деякій точці перетинати цей графік у інших точках?
2)Для якої функції дотична до графіка у кожній точці збігається із самим графіком?
3)Укажіть середню швидкість зміни функції  на проміжку від -2 до -1.
4) В якій точці похідна дорівнює нулю?
5) В якій з точок  х= 2,5   х = - 1,5 чи х= 0,5 похідна є від'ємною? 
6) Порівняйте числа f(10) і  f(3); 
f(2) і  f( -2,5)


Учень 2
1) Одна точка рухається прямолінійно за законом:  x=3t, а друга - а законом  x= t^2(t>0).
- Вкажіть момент часу, коли швидкості їх будуть однакові.
-Вкажіть проміжки часу, коли швидкість першої точки менша від швидкості другої.
-Зобразіть на одному малюнку графіки швидкостей обох точок.

понеділок, 16 листопада 2015 р.

Поняття многогранника. Правильні многогранники. Перерізи многогранників.( Презентація)

Мета. Розширити і поглибити знання учнів про правильні многогранники. Ознайомити з п'ятьма типами правильних многогранників та їх властивостями. Формувати навички використання комп'ютерних технологій при вивченні даного матеріалу. Розвивати самостійність, наполегливість, уміння аналізувати та узагальнювати.
Тип уроку. Вивчення нового матеріалу
Обладнання. Моделі правильних многогранників, презентація, задачі за готовими малюнками (Додаток1), кросворд (Додаток2)
 План уроку
І Організаційний момент
ІІ. Перевірка домашньої роботи
1) Математичний диктант
1-в
1. Побудувати циліндр. Побудувати осьовий переріз цилідра та діагональ осьового перерізу.
2. Вказати кут альфа між твірною та діагоналлю осьового перерізу циліндра , а також кут бета між діагоналлю та основою циліндра.
3. Знайти висоту циліндра, якщо радіус основи 3 см, а діагональ осьового перерізу 10 см.
4. Знайти відстань від центра верхньої основи циліндра до будь-якої точки кола нижньої основи, якщо висота циліндра 8 см, а діаметр кола 12 см.
2-в
1. Побудувати конус. Побудувати осьовий переріз конуса 
2. Вказати кут альфа між твірною і висотою конуса та кут бета між твірною та основою.
 3. Знайти висоту конуса, якщо діаметр основи 12 см, а твірна  конуса 10 см.
4. Знайти довжину кола основи, якщо твірна має 15см, а висота конуса 9 см.
ІІІ Актуалізація опорних знань